Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Carbohydr Polym ; 253: 117284, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278950

RESUMO

High-efficient vectors for the co-delivery of photosensitizers and chemotherapeutics were urgently needed for the combination therapy. In this work, a redox-responsive micelle (PCL-SS-CMC-GA) was prepared for the co-delivery of doxorubicin (DOX) and pheophorbide A (PHA). Poly-ε-caprolactone was linked to carboxymethyl chitosan through a disulfide bond, which was easily broken in the reductive solution to release the payloads. The charge conversion property and glycyrrhetinic acid (GA) targeting ligand of the micelles effectively extended the average residence time (up to 18 times) in circulation and improved their intracellular uptake by HepG2 cells. The micelles exhibited an enhanced tumor accumulation and near infrared (NIR) imaging performance. More interestingly, this nanoplatform could fully exert the synergistic effect of DOX and PHA to improve the inhibition efficiency (with an inhibitory rate of 80.5 %) in vivo. With impressive photo-chemo theranostic and NIR imaging capability, PCL-SS-CMC-GA@DOX/PHA showed great potential in image-guided treatment of liver cancer.


Assuntos
Quitosana/análogos & derivados , Portadores de Fármacos/química , Raios Infravermelhos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Doxorrubicina/administração & dosagem , Combinação de Medicamentos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Oxirredução , Radiossensibilizantes/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nutr Res ; 81: 19-37, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32828967

RESUMO

Chlorophyll, a phytochemical responsible for the green pigmentation in plants, has been studied for almost 100 years for its biological activities in humans. Over the past 30 years, the potential chemopreventative activities of both natural chlorophylls and their processed induced derivatives as well as the semisynthetic forms, such as sodium copper chlorophyllin, have been the focus of many research efforts. Established as potential chemopreventative agents with little to no bioavailability themselves, the activities of chlorophyll derivatives were generally ascribed to their ability to modulate mutagen/carcinogen bioavailability, their metabolism, and ultimately their ability to decrease the "exposure" to these carcinogens for humans at risk. More recently, systemic activities of chlorophyll derivatives have been reported to include modulation of oxidative stress and regulation of xenobiotic metabolizing systems and gene expression of systems critical to prevention of initiation and/or progression of cancer including NFE2-related factor 2, nuclear factor kappa B, TGF-ß, and ß-catenin pathways. With this in mind, the goals of this review are to provide an update to the comprehensive review of Ferruzzi and Blakeslee (2007) to include new insights into the behavior of chlorophyll derivatives in the gut as well as evidence of the systemic bioavailability of chlorophyll derivatives and their metabolites in support of potential impacts in prevention of cancer throughout the body.


Assuntos
Anticarcinógenos/administração & dosagem , Clorofila/análogos & derivados , Dieta , Neoplasias/prevenção & controle , Animais , Anticarcinógenos/metabolismo , Anticarcinógenos/farmacocinética , Anticarcinógenos/farmacologia , Disponibilidade Biológica , Carcinógenos/metabolismo , Carcinógenos/farmacocinética , Quimioprevenção , Clorofila/administração & dosagem , Clorofila/metabolismo , Clorofila/farmacocinética , Digestão , Sistema Digestório/metabolismo , Humanos , Absorção Intestinal , Mutagênicos/metabolismo , Estresse Oxidativo , Transdução de Sinais , Xenobióticos/metabolismo
3.
Braz. j. med. biol. res ; 53(1): e8389, Jan. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055479

RESUMO

Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.


Assuntos
Animais , Masculino , Ratos , Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glicólise/efeitos dos fármacos , Fígado/fisiopatologia , Fotoquimioterapia , Clorofila/administração & dosagem , Ratos Wistar , Estresse Oxidativo/fisiologia , Diabetes Mellitus Experimental/patologia , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Glicólise/fisiologia , Fígado/patologia
4.
Photochem Photobiol ; 96(3): 625-635, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31738460

RESUMO

To determine the impact of delivery vehicles in photosensitizing efficacy of HPPH, a hydrophobic photosensitizer was dissolved in various formulations: 1% Tween 80/5% dextrose, Pluronic P-123 and Pluronic F-127 in 0.5%, 1% and 2% phosphate buffer solutions (PBS). HPPH was also conjugated to Pluronic F-127, and the resulting conjugate (PL-20) was formulated in PBS. Among the different delivery vehicles, only Pluronic P-123 displayed significant vehicle cytotoxicity, whereas Pluronic F127 was nontoxic. Compared to PL-20, HPPH formulated in Tween80 and Pluronic F-127 showed higher cell-uptake, but lower long-term retention in Colon26 cell compared to PL-20. The higher retention of PL-20 was similarly observed during in vivo uptake with BALB/c mice baring Ct26 tumors. In contrast to the in vitro uptake experiments, PL-20 showed slightly higher uptake compared to HPPH formulated in Tween or Pluronic-F127. A significant difference in pharmacokinetic profile was also observed between the HPPH-Pluronic formulation and PL-20. Under similar in vivo treatment parameters (drug dose 0.47 µmol kg-1 , light dose: 135 J cm-2 at 24 h post-injection of PS), HPPH formulated either in Tween or Pluronic F-127 formulation showed similar in vivo PDT efficacy (20-30% tumor cure on day 60), whereas PL-20 showed 40% tumor cure (day 60).


Assuntos
Clorofila/análogos & derivados , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Poloxâmero/administração & dosagem , Animais , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Braz J Med Biol Res ; 53(1): e8389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31859908

RESUMO

Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.


Assuntos
Clorofila/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Glicólise/efeitos dos fármacos , Fígado/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Clorofila/administração & dosagem , Diabetes Mellitus Experimental/patologia , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Glicólise/fisiologia , Fígado/patologia , Masculino , Estresse Oxidativo/fisiologia , Fotoquimioterapia , Ratos , Ratos Wistar
6.
Biomater Sci ; 7(12): 5143-5149, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577285

RESUMO

Photodynamic therapy has attracted significant attention due to its localized treatment advantage. However, the non-specific distribution of photosensitizers and the subsequent potential toxicity caused by sunshine exposure hinder its wide adoption in cancer treatment. To minimize these unwanted effects and improve its efficacy, we developed a bioactivatable self-quenched nanogel, which remains in its inactive state in healthy tissues. Anti-EGFR Affibody decorated nanogels can effectively target head and neck cancer and release activated pheophorbide A in a reducing environment, such as in the tumor stroma and cytoplasm. Consequently, the EGFR targeted nanogel coupled with NIR irradiation alleviates tumor burden by 94.5% while not inducing systemic toxicity.


Assuntos
Clorofila/análogos & derivados , Neoplasias de Cabeça e Pescoço/terapia , Radiossensibilizantes/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofila/administração & dosagem , Clorofila/química , Clorofila/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Células HeLa , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Ligantes , Camundongos , Terapia de Alvo Molecular , Nanogéis/química , Fotoquimioterapia , Radiossensibilizantes/química , Radiossensibilizantes/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nutrients ; 11(10)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581743

RESUMO

Preclinical and observational research suggests green leafy vegetables (GLVs) may reduce the risk of red meat (RM)-induced colonic DNA damage and colon cancer (CC). We sought to determine the feasibility of a high GLV dietary intervention in adults with an increased risk of CC (NCT03582306) via a 12-week randomized controlled crossover trial. Participants were randomized to immediate or delayed (post-4-week washout) intervention groups. During the 4-week intervention period, participants were given frozen GLVs and counseled to consume one cooked cup equivalent daily. The primary outcomes were: accrual-recruiting 50 adults in 9 months; retention-retaining 80% of participants at completion; and adherence-meeting GLV intake goals on 90% of days. Adherence data were collected twice weekly and 24-h dietary recalls at each time point provided nutrient and food group measures. The Food Acceptability Questionnaire (FAQ) was completed to determine acceptability. On each of the four study visits, anthropometrics, stool, saliva, and blood were obtained. Fifty adults were recruited in 44 days. Participants were 48 ± 13 years of age, 62% female, and 80% Caucasian, with an average BMI at screening of 35.9 ± 5.1. Forty-eight (96%) participants were retained and completed the study. During the intervention phase, participants consumed GLVs on 88.8% of days; the adherence goal of one cup was met on 73.2% of days. Dietary recall-derived Vitamin K and GLVs significantly increased for all participants during the intervention periods. Overall satisfaction did not differ between intervention and control periods (p = 0.214). This feasibility trial achieved accrual, retention and acceptability goals, but fell slightly short of the benchmark for adherence. The analysis of biological specimens will determine the effects of GLVs on gut microbiota, oxidative DNA damage, and inflammatory cytokines.


Assuntos
Clorofila/administração & dosagem , Neoplasias do Colo/prevenção & controle , Dieta Saudável , Valor Nutritivo , Carne Vermelha , Verduras , Adulto , Alabama , Estudos Cross-Over , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Tamanho da Porção , Recomendações Nutricionais , Medição de Risco , Fatores de Risco , Fatores de Tempo
8.
Macromol Rapid Commun ; 40(18): e1900240, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31298785

RESUMO

A pH and thermo dual-responsive supramolecular diblock copolymer is constructed by host-guest recognition of pillar[5]arene and viologen salt. The host polymer, poly(N,N-dimethylaminoethyl methacrylate) bearing pillar[5]arene as the terminal group (P[5]A-PDMAEMA) is synthesized by atom transfer radical polymerization (ATRP). Guest polymer, ethyl viologen-ended poly(N-isopropylacrylamide) (EV-PNIPAM) is prepared by reversible addition-fragmentation chain transfer polymerization. The supramolecular diblock copolymer can be self-assembled into stable supramolecular nanoparticles in aqueous solution at 40 °C, which show excellent pH and thermo responsiveness. The nanoparticles are further applied in the encapsulation of photosensitizers (pyropheophorbide-a, PhA) for photodynamic therapy (PDT). The dual-responsive nanoparticles can efficiently release PhA in acidic environment at 25 °C. Based on the result of cell experiments, PhA-loaded nanomicelles exhibit excellent PDT efficacy and low dark toxicity toward A549 cells. Thus, this supramolecular diblock copolymer enriches the methodology of constructing stimuli-responsive drug carriers and presents a great potential in PDT.


Assuntos
Calixarenos/química , Metacrilatos/química , Nanopartículas/química , Nylons/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Células A549 , Acrilamidas/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Clorofila/química , Clorofila/uso terapêutico , Portadores de Fármacos , Humanos , Metacrilatos/síntese química , Micelas , Nylons/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Polimerização , Polímeros/química
9.
Int J Pharm ; 562: 313-320, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898641

RESUMO

Photosensitizer-based photodynamic therapy (PDT) has attracted great attention in cancer treatment. However, achieving efficient delivery of photosensitizers is still a great challenge for their clinical applications. The photosensitizer-encapsulating delivery nanosystem usually suffers from poor stability, complex preparation process and low drug loading. Herein, we utilize a surfactant-like chemotherapeutic agent, mitoxantrone (MTX), as a nanocarrier to deliver a photosensitizer pyropheophorbide a (PPa) for antitumor therapy. MTX consists of aromatic rings (hydrophobic part) and two amino-groups and two hydroxyl-groups (hydrophilic part) with planar structure, which could interact with PPa via π-π stacking, hydrophobic interactions, intermolecular hydrogen bonding and electrostatic interactions. This system (PPa@MTX) spontaneously forms near-spherical nanostructures (∼150 nm), has a high loading capacity for PPa (56.5%) and exhibits a pH-responsive drug release manner in vitro. In vivo antitumor efficacy evaluations show that the pegylated PPa@MTX nanosystem has increased accumulation in tumor tissues and enhanced antitumor efficacy in female BALB/c mice bearing murine mammary carcinoma (4T1) tumor cells, compared to free PPa. Employing the surfactant-like drug as nanocarriers, our results show that the "drug-delivering-drug" strategy is a good foundation for the development of novel PDT-based drug delivery system against cancer.


Assuntos
Antineoplásicos , Clorofila/análogos & derivados , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Mitoxantrona , Nanoestruturas , Fármacos Fotossensibilizantes , Tensoativos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Clorofila/química , Clorofila/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Camundongos Endogâmicos BALB C , Mitoxantrona/administração & dosagem , Mitoxantrona/química , Mitoxantrona/farmacocinética , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Tensoativos/administração & dosagem , Tensoativos/química , Tensoativos/farmacocinética
10.
Photochem Photobiol Sci ; 18(5): 1056-1063, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30608096

RESUMO

A second-generation chlorin-based photosensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) has shown tremendous therapeutic potential in clinical trials in the treatment of esophageal cancer. Herein, we have developed and validated a bioanalytical method for estimation of HPPH in rat plasma using High Performance Liquid Chromatography (HPLC) with a photo diode array (PDA) detector. The method was applied for carrying out pharmacokinetic study of HPPH. Further pharmacokinetic modeling was carried out to understand the compartment kinetics of HPPH. The developed method was fully validated as per the United States Food and Drug Administration (US-FDA) guidelines for bioanalytical method validation. The linearity of the method was in the range of 250-8000 ng mL-1, and the plasma recovery was found to be 70%. Pharmacokinetic parameters were evaluated and compared via non-compartment analysis and compartment modeling after the intravenous (i.v.) bolus administration in rats using Phoenix WinNonlin 8.0 (Certara™, USA). From the obtained results, we hypothesize that the HPPH complies with two compartmental pharmacokinetic model. Furthermore, it was observed that HPPH has the rapid distribution from the central compartment to peripheral compartment along with slow elimination from peripheral compartment.


Assuntos
Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/farmacocinética , Animais , Clorofila/administração & dosagem , Clorofila/sangue , Clorofila/farmacocinética , Cromatografia Líquida de Alta Pressão , Injeções Intravenosas , Cinética , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/sangue , Ratos , Ratos Wistar
11.
J Pharm Sci ; 108(6): 2102-2111, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30677421

RESUMO

Pyropheophorbide a (Pyro) is a promising photosensitizer; however, it has no tumor selectivity and enrichment capability. In our former work, the prepared folic acid (FA)-Pyro conjugates showed considerably improved tumor accumulation and photodynamic therapy (PDT) activity in cell- and animal-based studies. However, the targeting capability, selectivity and water solubility of the conjugate remain problematic. Here, we evaluated the installation of hydrophilic polyethylene glycol chains as the linker between Pyro and FA, by avoiding direct conjugation of Pyro with FA, aiming to improve tumor selectivity and accumulation. However, PEGylation may have negative effects on the PDT activity and cutaneous phototoxicity. Therefore, we chose various lengths of PEGs as linkers to optimize the molecular weight, hydrophilicity, and PDT activity and, thus, to balance the tumor selectivity and biological function of the conjugate. One optimized conjugate, Pyro-PEG1K-FA, exhibited excellent tumor enrichment and was able to eradicate subcutaneous tumors at a considerably reduced dose. We report the synthesis and characterization of these conjugates as well as the evaluation of their tumor accumulation ability and the corresponding PDT efficiency through in vitro and in vivo experiments.


Assuntos
Clorofila/análogos & derivados , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/administração & dosagem , Clorofila/química , Clorofila/farmacocinética , Portadores de Fármacos/toxicidade , Feminino , Ácido Fólico/química , Ácido Fólico/toxicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Camundongos , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Polietilenoglicóis/toxicidade , Solubilidade , Distribuição Tecidual , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomaterials ; 183: 139-150, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170256

RESUMO

To improve the therapeutic efficacy of gemcitabine (GEM) as an anticancer drug for bile duct cancer, GEM-loaded liposomes (GDPPL) prepared from a photosensitizer-conjugated lipid were investigated regarding the drug release kinetics, photodynamic therapy (PDT) efficacy, and immunomodulatory effects. The release rate of GEM from the liposomes was improved approximately 2-fold compared to non-laser irradiation groups due to lipid disruption by reactive oxygen species produced from the activated photosensitizer upon laser irradiation. Through in vitro testing using a human liver bile duct carcinoma cell line (HuCCT-1), the cytotoxicity of GDPPL with laser irradiation was enhanced due to rapid GEM release and PDT effects. Furthermore, the results of in vivo tests using a HuCCT-1 tumor-bearing xenograft mice model showed that GDPPL exhibited approximately 3-fold antitumoral effects compared to control group. Additionally, immunohistochemical analysis demonstrated the recruitment of immunostimulatory cells in tumor tissues. IHC tests in BALB/c mice indicated that GDPPL under laser irradiation dramatically enhanced the quantities of various immune cells for effective antitumoral immunotherapy against biliary tract cancer. From these results, it was concluded that GDPPL with rapid drug release behavior, PDT efficacy, and immunomodulatory effects upon laser irradiation has potential as an antitumor therapeutic agent for biliary tract cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/terapia , Clorofila/análogos & derivados , Colangiocarcinoma/terapia , Desoxicitidina/análogos & derivados , Fosfatidiletanolaminas/química , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Clorofila/administração & dosagem , Clorofila/química , Terapia Combinada , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Xenoenxertos , Humanos , Imunomodulação , Lasers , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Gencitabina
13.
Eur J Pharm Biopharm ; 130: 165-176, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29885851

RESUMO

Tumor-targeted photodynamic therapy (PDT) using polymeric photosensitizers is a promising therapeutic strategy for cancer treatment. In this study, we synthesized a pHPMA conjugated pyropheophorbide-a (P-PyF) as a cancer theranostic agent for PDT and photodynamic diagnostics (PDD). Pyropheophorbide-a has one carboxyl group which was conjugated to pHPMA via amide bond yielding the intended product with high purity. In aqueous solutions, P-PyF showed a mean particle size of ∼200 nm as it forms micelle which exhibited fluorescence quenching and thus very little singlet oxygen (1O2) production. In contrast, upon disruption of micelle strong fluorescence and 1O2 production were observed. In vitro study clearly showed the PDT effect of P-PyF. More potent 1O2 production and PDT effect were observed during irradiation at ∼420 nm, the maximal absorbance of pyropheophorbide-a, than irradiation at longer wavelength (i.e., ∼680 nm), suggesting selection of proper absorption light is essential for successful PDT. In vivo study showed high tumor accumulation of P-PyF compared with most of normal tissues due to the enhanced permeability and retention (EPR) effect, which resulting in superior antitumor effect under irradiation using normal xenon light source of endoscope, and clear tumor imaging profiles even in the metastatic lung cancer at 28 days after administration of P-PyF. On the contrary irradiation using long wavelength (i.e., ∼680 nm), the lowest Q-Band, exhibited remarkable tumor imaging effect with little autofluorescence of background. These findings strongly suggested P-PyF may be a potential candidate-drug for PDT/PDD, particularly using two different wavelength for treatment and detection/imaging, respectively.


Assuntos
Clorofila/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Fotoquimioterapia/métodos , Ácidos Polimetacrílicos/química , Animais , Clorofila/administração & dosagem , Clorofila/farmacocinética , Fluorescência , Neoplasias Pulmonares/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Micelas , Tamanho da Partícula , Permeabilidade , Fármacos Fotossensibilizantes/administração & dosagem , Polímeros/química , Nanomedicina Teranóstica/métodos , Fatores de Tempo , Distribuição Tecidual
14.
Biochem Biophys Res Commun ; 498(3): 523-528, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518390

RESUMO

Targeted drug delivery has been an important issue for tumor therapy including photodynamic therapy (PDT). The purpose of our study is to increase the targeting efficiency of photosensitizer (PS) using folate-modified nanoparticles (NPs) to tumor site in vivo. Folate receptor is over-expressed on the surface of many human cancer cells. We prepared poly (lactic-co-glycolic acid) (PLGA) NPs containing pheophorbide a (Pba), a PS that is used in PDT and generates free radical for killing cancer cells. The surface of NPs was composed of phospholipids modified with polyethylene glycol (PEG) and folate (FA). The size of the resulting FA-PLGA-Pba NPs was about 200 nm in PBS at pH 7.4 and they were stable for long time. They showed faster cellular uptake to MKN28 human gastric cancer cell line than control PLGA-Pba NPs by high-affinity binding with folate receptors on cell surface. In MTT assay, FA-PLGA-Pba NPs also showed enhanced tumor cell killing compared to control PLGA-Pba NPs. In vivo and ex vivo imaging showed high accumulation of FA-PLGA-Pba NPs in tumor site during 24 h after intravenous injection to MKN28 tumor-bearing mice model. These results demonstrate that our FA-PLGA-Pba NPs are useful for tumor-targeted delivery of PS for cancer treatment by PDT.


Assuntos
Clorofila/análogos & derivados , Ácido Fólico/química , Ácido Láctico/química , Nanopartículas/química , Fármacos Fotossensibilizantes/administração & dosagem , Ácido Poliglicólico/química , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Clorofila/farmacocinética , Clorofila/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias Gástricas/patologia
15.
Colloids Surf B Biointerfaces ; 161: 555-562, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145103

RESUMO

The stability of Chlorophyll a in water during prolonged exposure, at room temperature, to a neon lamp has been investigated by means of UV-vis and fluorescence spectroscopies. In addition, the Chlorophyll a (photo)stability evaluation in presence of suitable carriers has been performed in order to investigate its reactivity under the same conditions, for possible and future applications in Antimicrobial Photodynamic Therapy. Cetyltrimethylammonium chloride was chosen to solubilize Chlorophyll a in water. While, cetyltrimethylammonium chloride-capped gold nanoparticles offer a great opportunity because combine the Chlorophyll a action, used as a photosensitizer in Antimicrobial Photodynamic Therapy, with gold nanoparticles effect used in photothermal therapy. Indeed, the latter ones have exhibited an interesting rise of temperature if irradiated with visible light. Overall, both examined systems, cetyltrimethylammonium chloride/Chlorophyll a and gold nanoparticles/Chlorophyll a, were able to induce the Reactive Oxygen Species formation fundamental for a potential application in Antimicrobial Photodynamic Therapy.


Assuntos
Compostos de Bis-Trimetilamônio/química , Clorofila/química , Portadores de Fármacos/química , Ouro/química , Nanopartículas/química , Água/química , Clorofila/administração & dosagem , Clorofila A , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/química , Espectrometria de Fluorescência , Espectrofotometria
16.
Mol Pharm ; 14(3): 842-855, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199124

RESUMO

The clinical application of intracellular gene delivery via nanosized carriers is hindered by intracellular multistep barriers that limit high levels of gene expression. To solve these issues, four different intracellular or external stimuli that can efficiently activate a gene carrier, a gene, or a photosensitizer (pheophorbide A [PhA]) were assessed in this study. The designed nanosized polymeric gene complexes were composed of PhA-loaded thiol-degradable polycation (PhA@RPC) and cytomegalovirus (CMV) promoter-equipped pDNA. After cellular internalization of the resulting PhA@RPC/pDNA complexes, the complexes escaped endosomal sequestration, owing to the endosomal pH-induced endosomolytic activity of RPC in PhA@RPC. Subsequently, intracellular thiol-mediated polycation degradation triggered the release of PhA and pDNA from the complexes. Late exposure to light (for example, 12 h post-treatment) activated the released PhA and resulted in the production of reactive oxygen species (ROS). Intracellular ROS successively activated NF-κB, which then reactivated the CMV promoter in the pDNA. These sequential, stimuli-responsive chemical and biological reactions resulted in high gene expression. In particular, the time-point of light exposure was very significant to tune efficient gene expression as well as negligible cytotoxicity: early light treatment induced photochemical internalization but high cytotoxicity, whereas late light treatment influenced the reactivation of silent pDNA via PhA-generated ROS and activation of NF-κB. In conclusion, the quadruple triggers, such as pH, thiol, light, and ROS, successively influenced a gene carrier (RPC), a photosensitizer, and a genetic therapeutic, and the tempo-spatial activation of the designed quadruple stimuli-activatable nanosized gene complexes could be potential in gene delivery applications.


Assuntos
DNA/metabolismo , Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Técnicas de Transferência de Genes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , NF-kappa B/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Plasmídeos/genética , Poliaminas/administração & dosagem , Polieletrólitos , Espécies Reativas de Oxigênio/metabolismo , Transfecção/métodos
17.
Int J Pharm ; 520(1-2): 195-206, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28179191

RESUMO

Mitochondria-targeting drug carriers have considerable potential because of the presence of many molecular drug targets in the mitochondria and their pivotal roles in cellular viability, metabolism, maintenance, and death. To compare the mitochondria-targeting abilities of triphenylphosphonium (TPP) and pheophorbide a (PhA) in nanoparticles (NPs), this study prepared mitochondria-targeting NPs using mixtures of methoxy poly(ethylene glycol)-(SS-PhA)2 [mPEG-(SS-PhA)2 or PPA] and TPP-b-poly(ε-caprolactone)-b-TPP [TPP-b-PCL-b-TPP or TPCL], which were designated PPAn-TPCL4-n (0≤n≤4) NPs. With increasing TPCL content, the formed PPAn-TPCL4-n NPs decreased in size from 33nm to 18nm and increased in terms of positive zeta-potentials from -12mV to 33mV. Although the increased TPCL content caused some dark toxicity of the PPAn-TPCL4-n NPs due to the intrinsic positive character of TPCL, the NPs showed strong light-induced killing effects in tumor cells. In addition, the mitochondrial distribution of the PPAn-TPCL4-n NPs was analyzed and imaged by flow cytometry and confocal microscopy, respectively. Thus, the PhA-containing NPs specifically targeted the mitochondria, and light stimulation caused PhA-mediated therapeutic effects and imaging functions. Expanding the capabilities of these nanocarriers by incorporating other drugs should enable multiple potential applications (e.g., targeting, therapy, and imaging) for combination and synergistic treatments.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Mitocôndrias/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacocinética , Clorofila/farmacologia , Diagnóstico por Imagem/métodos , Humanos , Nanopartículas/metabolismo , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/farmacologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/análise , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/administração & dosagem , Poliésteres/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
18.
Molecules ; 21(7)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455223

RESUMO

Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields.


Assuntos
Clorofila/química , Sílica Gel/química , Clorofila/administração & dosagem , Clorofila A , Portadores de Fármacos/química , Fluorescência , Hidrólise , Modelos Moleculares , Estrutura Molecular , Espectroscopia Fotoeletrônica , Solventes , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
19.
J Dairy Sci ; 99(8): 6263-6273, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27265172

RESUMO

This study examined whether adding 3 mycotoxin-sequestering agents to diets contaminated with aflatoxin B1 (AFB1) would reduce milk aflatoxin M1 (AFM1) concentration, and improve the performance and alter immune status of dairy cows. Fifteen lactating dairy cows were used in an experiment with an incomplete crossover design including four 28-d periods. Treatments included a control diet (C), a toxin diet (T; 1,725µg of AFB1/head per day; 75µg/kg), and diets containing the toxin and 20g/head per day of a proprietary mixture of Saccharomyces cerevisiae fermentation product containing a low (SEQ1) or high (SEQ2) dose of a chlorophyll-based additive, or a low dose of the chlorophyll-based additive and sodium bentonite clay (SEQ3). Sequestering agents were top-dressed on the total mixed ration (TMR) daily in each period, and AFB1 was dosed orally in gelatin capsules before the TMR was fed on d 21 to 25. Milk was sampled twice daily on d 20 to 28 and plasma was sampled on d 20 and 25. Sequestering agents did not affect milk AFM1 concentration during the toxin-dosing period. However, after AFB1 was withdrawn, the sequestering agents reduced the time required (24 vs. 48h) to reduce the milk AFM1 concentration below the Food and Drug Administration action level of 0.5µg/kg. Feeding T instead of C tended to reduce milk and fat-corrected milk yields, but feeding SEQ1 prevented these effects. Red blood cell count and hemoglobin concentration were reduced by feeding T instead of C, but not by feeding SEQ1, SEQ2, or SEQ3. The mean fluorescence intensity of antibody staining for 2 leukocyte adhesion molecules, L-selectin (CD62L) and ß-integrin (CD18), tended to be greatest when SEQ1 and SEQ3 were fed. Plasma acid-soluble protein concentration was decreased by feeding SEQ1, SEQ2, and SEQ3 instead of T. Sequestering agents had no effect on milk AFM1 concentration, but they reduced the time required to reduce milk AFM1 concentration to a safe level after withdrawal of AFB1 from the diet. Only SEQ1 prevented the adverse effects of AFB1 on milk and fat-corrected milk yields.


Assuntos
Aflatoxina B1/análise , Aflatoxina M1/análise , Ração Animal/análise , Dieta/veterinária , Sequestrantes/administração & dosagem , Ração Animal/microbiologia , Animais , Bentonita/administração & dosagem , Cápsulas , Bovinos , Clorofila/administração & dosagem , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Fermentação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Cadeias beta de Integrinas/sangue , Selectina L/sangue , Lactação , Leite/química , Leite/metabolismo , Leite/microbiologia , Saccharomyces cerevisiae
20.
Biomaterials ; 77: 227-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26606448

RESUMO

Light-triggered drug delivery is among the most investigated stimulus-response strategies and has been widely explored in cancer treatment. However, the limited specificity of light-triggered drug delivery reduces the therapeutic efficacy and causes considerable undesirable side effects. In this work, we demonstrate a highly tumor-specific light-triggerable drug carrier (H-LTDC) induced by a combination of internal (i.e., tumor hypoxia) and external stimuli (i.e., light). The doxorubicin (DOX)-loaded H-LTDC was self-assembled from type-1-reactive oxygen species (ROStype1)-mediated degradable chondroitin sulfate (CS) conjugated with a photosensitizer (PS), Pheophorbide-a, which has a spherical shape and a uniform size distribution. Under hypoxic conditions, ROSType1 was mainly generated due to the electron-rich sulfate groups in the polysaccharide backbone. The ROStype1 generated by H-LTDC allowed laser-triggered drug release at low oxygen concentrations. From the in vitro cytotoxicity tests with colon cancer cells (HCT-116), under laser irradiation, DOX-loaded H-LTDCs showed higher toxicity under hypoxic conditions than that under normoxic conditions. In vivo and ex vivo biodistribution studies demonstrated that H-LTDCs selectively accumulated in the tumor tissues. As a result, drug-loaded H-LTDCs exhibited high anti-tumor activity in vivo. Overall, we believe that this approach could represent a promising platform for the treatment of tumor and hypoxia-associated diseases without undesirable side effects.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Hipóxia Celular , Clorofila/análogos & derivados , Sulfatos de Condroitina/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/administração & dosagem , Luz , Nanopartículas/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Configuração de Carboidratos , Clorofila/administração & dosagem , Clorofila/efeitos da radiação , Portadores de Fármacos/efeitos da radiação , Transferência de Energia , Células HCT116 , Humanos , Lasers Semicondutores , Camundongos , Camundongos Nus , Nanopartículas/efeitos da radiação , Fibras Ópticas , Oxirredução , Fármacos Fotossensibilizantes/efeitos da radiação , Polissacarídeos/química , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Oxigênio Singlete , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA